
Improvements in a Jiles-Atherton 

Vector Hysteresis Model  
 

J. B. Padilha, Jean V. Leite, N.Sadowski, P. Kuo-Peng and N. Jhoe Batistela 
 

GRUCAD/EEL/UFSC, Florianópolis, Santa Catarina, P.O. Box 476, 88040-970 Brazil, juliano.padilha@posgrad.ufsc.br 

 

Electromagnetic devices can experiment alternating and/or rotational magnetic fluxes. Alternating and rotating losses are associated 

to these fluxes, wherein the rotating components are generally larger than the alternating ones and concentrated in particular areas of 

rotating electrical machines and transformers. Under rotational flux conditions a vector relationship between field and induction must 

be considered. The phenomenon of magnetic hysteresis under rotating flux is only conveniently modeled with vector hysteresis models 

as the Jiles-Atherton vector version employed in this work, in which some modifications are performed in order to improve its 

behavior. 

 
Index Terms— Magnetic hysteresis, magnetic materials, magnetic anisotropy. 

 

I. INTRODUCTION 

agnetic hysteresis modeling remains a challenge, 

especially if it is associated to rotating fields.  The 

rotational losses are generally larger than the alternating ones 

and are concentrated in particular areas as the yoke tooth in 

electrical machines and in the T-joints of three phase electric 

transformers.  Rotational losses have influence on the 

efficiency of electromagnetic devices and this research topic is 

still current and open to further investigations [1], [2]. Under 

rotating fluxes, magnetic hysteresis exhibits a complex 

behavior that cannot be accurately modeled with scalar 

approaches, requiring vector hysteresis models for a suitable 

representation of the phenomenon.  

 Starting from the Jiles-Atherton scalar hysteresis model 

([3][4]), Bergqvist ([5]), proposed a first vector generalization 

of it where the variations of the magnetic induction vector B 

could be obtained from the variations of magnetic field vector 

H. Based on the Bergqvist work, an inverse vector 

generalization of the Jiles-Atherton model was developed and 

presented in [6]. In this version, the magnetic vector field H is 

obtained from a magnetic vector induction B. This approach is 

better suited in field calculations by numerical methods with a 

magnetic vector potential formulation because in such cases 

the induction is known a priori. 

 In the model proposed in [6], some simplifications were 

assumed and implemented. In this work the inverse model 

equations are reviewed looking for a more accurate modeling 

of the magnetic materials hysteretic behavior. More 

specifically, the main contribution of this work is to perform a 

modification on the anhysteretic calculation, in order to 

improve the model representation of anisotropic and isotropic 

materials, as well to analyze the impacts of this modification 

on the convergence of field calculations. 

II. THE INVERSE JILES-ATHERTON HYSTERESIS MODEL 

The model proposed in [6] is based on the following 

equations. Firstly, a vector variable is introduced 
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where 
an

M , M and k
�

 are, respectively, the anhysteretic 

magnetization, the total magnetization and a second rank 

tensor whose terms are obtained experimentally [5]. The 

effective field vector variation edH is given by 
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where dH  is the magnetic field variation and α
�

 is a tensor 

also obtained from experimental data. 

The evolution of the magnetization vector is evaluated 

accordingly to the sign of the scalar product between 
f

χ
�

 and 

e
dH as [6]: 
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Equation (4) is a restriction used in order to avoid non-

physical behavior of the total magnetization. A similar 

approach is also used in the scalar Jiles-Atherton model. 

In (3) and (4) 
0

µ
 
is the magnetic permeability of the 

vacuum, 1  is the diagonal unity matrix, c
�

 also is a tensor 

obtained from experimental data and ξ
�

 is a matrix of the 

anhysteretic functions derivatives with respect to the effective 

field components [4]. 

With dM , the vector magnetic field is evaluated in both, 

isotropic and anisotropic materials from a known induction 

vector B. 

In the model, the anhysteretic part (
an

M ) of the total 

magnetization (M ) is represented by ξ
�

 and is modeled with 

vector Langevin functions, playing an important role in the 

total magnetization [6]. Here we propose some improvements 

M



in ξ
�

 with respect to the original proposition given in [6], as 

follows. 

III. ANHYSTERETIC MAGNETIZATION MODELING 

In [6], ξ
�

was assumed as a diagonal matrix containing the 

derivatives of the anhysteretic functions with respect to the 

effective field as given, for the two dimensional case, in (5): 
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In equation above indexes x and y are related to the two main 

spatial directions in the Cartesian plane (x,y). 

The assumption above allowed a good model numerical 

performance as well to represent anisotropic and isotropic 

materials with enough accuracy for a large set of magnetic 

materials. 

However, for some magnetic materials, (5) does not 

represent appropriately the magnetic material behavior [7]. In 

order to overcome this drawback and after some physical 

considerations (5) can be rewritten as 
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where all the partial derivatives are now taken into account. In 

the full paper (6) will be showed in details as well its 

identification method.  

IV. RESULTS 

A simple two dimensional case was chosen, supposing that 

the magnetic flux alternates at 0° and 45° with respect to the x 

direction on an isotropic material. Figure 1 shows the BH 

loops obtained with the model using (5) to model matrix ξ
�

.  

 
Fig. 1. BH loops for alternating fluxes at 0° and 45°. Loops obtained with (5). 

 

As the material is isotropic, any pulsating flux should 

originate identical loops, independently of the spatial direction 

of the flux. These results show that, for this material, the 

isotropic characteristic is not well represented and a 

significant difference between the losses obtained for both 

directions is expected, highlighting the model deficiency. 

 Figure 2 shows the results obtained replacing (5) by (6) in 

the model equations. Now the loops are superposed giving rise 

to the same hysteresis losses. 

 

 
Fig. 2. BH loops for alternating fluxes at 0° and 45° . Loops obtained with (6). 

V. CONCLUSIONS 

The modifications performed on the equations leads a more 

physical behavior of the model. Preliminary results have 

shown additionally that this new approach can improve the 

convergence of field calculations by numerical procedures 

taking the inverse model in its formulation. With the new 

approach calculation time with a finite element program was 

reduced in about 45%. This topic will be explored in the full 

version of the paper as well calculated results will be 

compared with experimental ones to show the modeling 

effectiveness. 
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